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Abstract

This paper examines the cffects of outliers on:
{i) the estimated parameters of the AR(1)-
GARCH(1,1) process; (ii) the second and fourth
moment conditions of the process; and (iii) fore-
cast errors. We find that outliers: (i} tend to dom-
inate the maximum likelihood estimates, resulting
in larger ARCH and smaller GARCH estimates;
(i} may give rise to spuricus AR(1) and ARCH
effects when the outliers are extremely large; (iii)
significantly increase the frequency of violation of
the fourth moment condition; (iv) significantly de-
crease the t-ratios of the GARCH estimates; (v)
significantly increase the variability of the time se-
ries of the GARCH({1,1} volatility forscasts; and
{vi) decrease the persistence measure of the volatil-
ity process. Removing outliers results in signifi-
cantly improved daily volatility forecasts in terms
of overprediction errors, but this docs not trans-
late into improved out-of-sample predictive power,
For all the time series investigated, we find that
the iid. assumption of the standardised residu-
als cannot be rejected at the 5% significance level.
In contrast, the assumption of conditional normal-
ity cannot be justified, even when all the outliers
are removed. We find that the maximum excess
kurtosis that can be captured by the GARCH(1,1)
model under the assumption of conditional normal-
ity increases with the standard deviation (which is
approximately 40),

1 Introduction

In finance, volatility is a fundamental measure of
risk and of relative movements in the price of a
security, such as stock, stock index or futures con-
tract, over time. As the true underlying volatil-
1ty of a’security is unobservable; it tiigt be estic
mated. While volatility can be expressed in differ-

ent ways, the typical definition used in finance is

the standard deviation of the returns of a security
over a given period. Since volatility is an essential
input to the optimisation of financial models de-
scribing the expected risk-return trade-off, it is of
paramount importance to practitioners to use an
adequate empirical model to measure the dynamics
of volatility in financial securities.

Financial equity returns generally do not match
the familiar bell-shaped normal distribution. In-
stead, financial markets frequently experience large
and sudden price movements that predominantly
consist of market crashes, not rallies. A recent
example of extreme price movements is the Oc
tober 1997 stock market crash originating in Asia.
Ou 28 October 1997, the Hang Seng Stock Index
(H51} dropped by 14.7%, the German Stock Index
(DAX) by 7.2%, the Standard & Poor’s 500 Com-
posite Index (S&P 500) by 5.0%, and the Japanese
Stock Index (Nikkei 225) by 4.4%. A consequence
of these outlying and extreme observabions is the
fat-tailed distribution of returns.

There is overwhelming evidence that the tail be-
haviour of equity returns evolves over time. In par-
ticular, absolute returns have significant positive
serial correlation over long lags, implying that they
have long term memory. This is known as volatility
clustering: large (small) returns are more likely to
be followed by large (small) returns than by small
{large) returns, but of unpredictable sign. Hence,
the returns are not independently and identically
distributed (1.i.d.) over time. The implication for
practitioners is that financial market volatility is
highly predictable.

The autoregressive conditional heteroskedasticity
(ARCH(p}) model of Engle [1982] and generalised
ARCH (GARCH(p,q)) model of Bollerslev [1986!
is currently the most popular volatility modelling
and forecasting model for both market profession-

-als and academic researchers. -GARCH has been- -

applied extensively to numerous financial time se-
ries, and its popularity is due to the fact that
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it: (i) captures the persistence of volatility; (ii)
can account partiy for the fat-tails of the returns
distribution; and (i} is simple, and also mathe-
matically and computationally straightforward. In
the majority of cases, it has been shown that the
GARCH(1,1) model adeguately represents the ob-
served intertemporal dependencies in daily returns
of most financial time series.

Of increasing importance in time series modelling
and forecasting is the problem of cutliers. Qutlier
analysis in time series is concerned with the detec-
tion and accommodation of abnormal observations
in the data, and their influence on the mean and
vartance of financial time series. Despite the volu-
minous research that has estimated volatility us-
ing GARCH-type models, very little attention has
been given to the effects of outlying observations
in the data.

This paper examines the effects of outliers on the
properties of the AR({1)-GARCH(1,1) model by ap-
plying the Chen and Liu [1993] ocutlier detection
and removal procedure to the daily returns of a
wide range of financial time series. The paper is
organised as follows. Section 2 presents the AR(1)-
GARCH(1,1) model. Section 3 describes cutliers.
Section 4 analyses the empirical results. Some con-
cluding comments are given in Section 5.

2 The
model

AR(1)-GARCH(1,1)

Consider the AR(1}-GARCH(1,1) model, where
the conditional mean (log returns) has the struc-
ture given by

(1)

Y = [+ Py + &

and the conditional variance of ¢ is generated by

£p = m‘\/f_tg (2)

{3)

where 7; is a sequence of normally, independently
and identically distributed (n.ii.d.} random vari-
ables (shocks) with zero mean and unit variance.
Sufficient conditions for paositivity of the condi-

ht = W 4 {l’E?ml -+ ﬁh;__l

tional variance and. the GARCH(I,1} process to

existarethat w >0, a>0and 2> 0.

Several statistical properties have been established

“for the GARCH(1,1) process in order to define the

unconditional moments of {g;} {Bollerslev [1986]).
First, the second moment of {&;} exists if {ov+5) <
1. This condition must be met in order for the
GARCH(1,1) process to be strictly stationary and
ergodic, and E(e?} < o0, Second, a necessary and
sufficient condition for the existence of the fourth
moment of {g,} is (ka® + 208+ 4%) < 1 (Bollerslev
[1986]), where & is the conditional fourth moment
of ;. Under the assumption of conditional normal-
ity, k = E(n}) = 3, so that the condition becomes
(3% + 208 + 4% < L.

3 QOutliers

QOutliers are considered as large observations (or
a subset of observations) that lie [ar removed
from the Gaussian (or heavy-tailed) conditional
distribution assumed for the model generating the
data. Although these observations could come
from a (aussian (or heavy-tailed) distribution,
they should occur only rarely. For example, the
Gaussian distribution predicts that, on average,
observations will fall cutside 440 less than 0.003%
of the time. However, in reality, such outlying ob-
servations are observed far too frequently to be
consistent with normality in the data.

In autoregressive [integrated) moving average
{AR(I)MA)} models, it has been found that out-
liers can result in significantly negatively biased
estimates of the AR(1) coelicient and positively
biased estimates of the MA(1) coefficient, and may
result in model misspecification {Ledolter [158%]).
In the presence of outliers, the estimate of the
ARCH effect in the GARCH(1,1} model can be
severely biased upwards, and the estimate of the
GARCH effect severely biased downwards {Engle
and Lee [1993]; Franses and Ghijsels [1999]}. Out~
liers also adversely alfect both the size and power of
the standard Lagrange Multiplier {EM) test used
to detect ARCH effects, leading to model misspec-
ification {Franses et al. [1998]; van Dijk et al
[1999]). In particular, a few outliers, either iso-
lated or in patches, may result in spurious ARCH
effects when none, in fact, is present.

Qutliers may affect forecasts through the carry-
over effect on the ARCH and GARCH terms, and
may have a permanent effect on forecasts through
sheir effects on the parameter estimates. In par-
ticular, the accuracy of the point forecast imme-
distely following an outlier has been shown to
be severely impaired {Ledolter [1988]). However,

point forecasts are significantly less affected by ad-

— 448 ~



ditive ountliers (AO) when they occur more than
two periods away from the forecast origin., This
result arises because the effects of past shocks on
subsequent forecasts diminish exponentially with
the number of periods away from the forecast ori-
gin.

We argue that returns consist of fwo types of ob-
servations: (i} ordinary observations arising from a
conditional normal {or heavy-tailed) distribution,
and which are realised in each period; and (ii)
outlying (extraordinary) ohservations that are not
generated by a normal distribution, and which are
realised infrequently and irregularly. We further
argue that cutlying observations are independent
of ordinary observations, and are not generated by
a GARCH(1,1} process. Consequently, these cut-
lying observations should not be used in estimat-
ing the AR(1)-GARCH(1,1} parameters. One way
of proceeding is to identify outlicrs so that they
can be down-weighted and their impacts removed.
The principal idea behind such cutlier adjustments
is to apply the non-robust MLE procedure to the
"eleansed” returns {y} }, rather than to the original
returns {y:}.

We have applied a2 modified version of the Chen
and Liu [1993] method to deal with outliers in
the AR(1)}-GARCH(1,1) model, as described in
Franses and Ghijsels {1999].  This procedure
jointly detects outliers and estimates the model
paramecters. It is a fully-automated iterative
method, which consists of specification-estimation-
detection-removal cycles to accommodate individ-
ually the most significant outliers. In cach iter-
ation, the maxitmun of the given test statistic is
determined for a specific type of outlier, and the
maximum across all types of outliers Is examined.
The maximum is then compared to a pre-specified
critical value. If the test statistic exceeds the crit-
ical value, the ocutlier is effectively removed (e.z.
down-weighted) and the parameters of the model
are re-estimated. This cycle is continued until the
test statistics for all data points lie below the crit-
ical value.

4 Empirical Results

4.1 Data

- The effects of outliers on the AR(1-GARCH{I1)

model were evaluated using 1000 trading days of
five financial thme series, comprising stock index,

“currency “and connnoditydatar the daily oloses

to-close log index returns of the S&P 500, the
Nikkel 225 and the HSI, the ncon (Pacific time)
British Pound-U.8. Dollar {GBP/USD} spot ex-
change rate, and the closing (London) Gold Bullion
{GB) spot rate. The close-to-close index returns
and the noon GB spot rate were obtained from
Datastream, while the GBP/USD spot exchange
rate was obtained from the Pacific Exchange Rate
Service,

A rolling window of 300 trading days was used.
The mean values for the parameter estimates, mo-
ment conditions and forecast errors were caleulated
using 00 one-day ahead wvolatility forecasts, For
the outlier test statistic, we used critical valies
of 10, 8, 6 and 4. The forecasts were compared
with the realised volatility according to the follow-
ing definition:

(4)

where daily log returns are defined as g, =

ln(%), with £ denoting the price in period t.

o ={y — 7|

4.2 The effects of outliers on the un-
conditional returns
distributions

None of the unadjusted time series is normally
distributed, as indicated by the Jarque-Bera LM
statistics. While the skewriess of all the returns
distributions is relatively small and negative (ex-
cept for HSI), the kurtosis is large, implying that
much of the departure from normality is_due to
leptokurtosis. The GB spot rates are the most
volatile time series, having the largest standard de-
viation, followed by HSI, Nikkei 225, S&P 500 and
GBD/USD.

The largest mumbers of outliers and extreme ob-
servations are observed for the Nikkel 225 series,
with 9 observations larger than e, 20 observation
larger than 4o, and 47 observations larger than
Jo. This is followed by HSI (4, 13 and 41, re-
spectively), S&P 500 (2, 12 and 26, respectively),
GB (2, 11 and 23, respectively) and GBP/USD
{0, 2 and 23, respectively}, which are significantly
greater than expected from a normal distribution.
The Nikkei 225 series also has the highest kurtosis
measure (51.06), and the largest (relative) posi-
tive {8.05¢) and negative {—13.55¢0) outliers, with -
the large negative outlier corresponding to the 19
October 1987 stock market crash, Although both

- postbive and negative outliers are observed; on av-
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erage there appear to be more negative cutliers.
Moreover, the largest outlier is frequently nega-
tive, which is often subsequently followed by a large
positive outlier. In addition, there appears to be a
correspondence between the occurrence of outlying
and extreme observations.

Removing cutlying observations reduces the kur-
tosis measure, but the distribution remains non-
normal. Similarly, the S&P 500, Nikkei 225, HSI
and GB spot rates all become more symmetric,
suggesting that the outliers are primarily responsi-
ble for the asymmetries in these series. In contrast,
the negative skewness observed for the GBD/USD
spot exchange rate does not approach zero, imply-
ing that the skewness in this series is caused by the
ordinary returns.

4.3 The effects of cutliers on the pa-
rameter estimates

Before examining the parameter estimates of the
AR(1-GARCH(1,1} model, we need to check
whether the model is a valid description of the
data. First, a minimum requirement is that the
estimated 7, are i.i.d.. The Ljung-Box statistics
do not indicate any viclations of the i.i.d. assump-
tion of n;. Second, the assumption of conditional
normality should not be rejected. However, the
Jarque-Bera LM statistic indicates that for both
the unadjusted and adjusted series, the assumption
of conditional normality could be rejected. The de-
gree of excess kurtosis induced by the GARCH(1,1)
model with conditional normality increases with
the standard deviation of the series {(which is ap-
proximately 40).

For the H5I, Nikkei 225 and GBD/USD, the daily
returns are positively correlated, while the daily re-
turns are negatively correlated for GB. Removing
outliers generally results in smaller and less sig-
nificant AR(1) () estimates, For example, when
outliers are removed, the average ¢ estimate for
the HSI and Nikkei 225 series drops by up to 40%.
Extremely farge {positive or negative) outliers re-
sult in substantially negatively biased  estimates,
leading to spurious AR(1) effects. These findings
are consistent with those of Ledolter [19891.

For both the adjusted and unadjusted time se-
ries, the ARCH and GARCH estimates of the
GARCH(1,1) model are significantly different from
zero, with the 5 estimates having a substantially
higher statistical significance. The average o es-
timates are also much smaller than the average 3.

estimates. This indicates that, on average, there
is a relatively weak reaction of conditional volatil-
ity to shocks (ARCH effects), but with a long-term
memory (GARCH effects).

The results show that, in particular, the o esti-
mates and, to a lesser extent, the 5 estimates vary
considerably over time, even when outlying obser-
vations are removed. In particular, the o estimates
are substantially larger (smaller) when volatility
is high (low), while the 3 estimates are substan-
tially smaller (larger). This implies that larger
shocks have larger ARCH (short-run) effects but
smaller GARCH (long-run) effects. For example,
when cutliers are removed for the HSI, the mean
lag (ﬁ} of the GARCH process increases from
5.2 to 14.5.

The MLE is dominated by outlying observations,
with the short-term memory of the outlying shocks
overwhelming the long-term memory of the smaller
shocks. For example, removing the seven larpest
outliers in the second least volatile index series,
the S&P 500, causes the averape o estimate to de-
crease by 0064 (from 0.123 to 0.059), while the
average 3 estimate increases by 4.085 (from 0.834
to 0.919}. The most significant changes in the
parameter estimates are observed for the Nikkei
225, which has the largest outliers. For this series,
when the largest cight outliers are down-weighted
and the maximum absolute outlier decreases from
13.550 to 5.100, the average o cstimate decreases
by 0.279 (from 0.435 to (1.156) while the average A
estimate increases by 0.398 {from 0.377 to 0.775}.

For the individual time series, a sharp increase
in the @ estimate and-a simultaneous and almost
equivalent sharp decrease in the /4 estimate follows
when an outlier enters the estimation period. The
effects remain while the outlier remains in the es-
timation period, and its position in the estimation
pericd appears to have little influence on the mag-
nitude of its efiect. When the outlier eventually
drops out of the estimation period, the cffect on
the parameter estimates is reversed. The larger is
the size of the outlier, the larger is its effect on
the parameter estimates. This is particularly ev-
ident in the Nikkel 225 series, which inciude the
1987 stock market crash. When the extremely
large outlier (> 13¢) of 18 Oclober 1887 enters
the estimation period, this causes a sharp and dra-
matic increase (0.571) in the « estimate and an
almost. eguivalent sharp-decrease ((.582)-in-the 3
estimate. Moreover, when the extremely large pos-
itive outter (> 97) of 20 October 1987 enters the
estimation period, no-significant additional effect-
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on the parameter estimates is observed. This iflus-
trates the fact that the occurrence of just a single
extreme outlier can yield spurious ARTH effects.

In addition to the dramatic negative effect of out-
liers on the @ estimates, outliers have a similar of-
fect on their teratios. In contrast, although outliers
usually have a dramatic positive effect on the o es-
timates, no such effect is observed on their t-ratios.
For example, for S&P 500, when the largest outlier
(6.9a) of the series enters the estimation period,
this causes a sharp and dramatic decrease (from
23.58 to 9.82) in the t-ratio of the 8 estimate while
the t-ratio of the o estimate drops only slightly
{(from 1.05 to 1.01). The effocts on the t-ratios of
the @ estimates remain as long as the outlier re-
mains in the cstimation period,

4.4 The effects of outliers on the
moment conditions

The average estimated value of (o + #) is nsually
very close to (but less than) unity, mplying that
the volatility process is highly persistent and close
to 2 unit roct. On average, outliers cause a slight
decrease in the persistence measure (e 4 () of the
volatility process.

Only for the two series with the largest outlers,
namely the Nikkel 225 and HSI, is the second mo-
ment condition violated, However, the largest es-
timated value is ouly 1.02. When the extreme out-
liers are removed, the second moment condition is
satisfied. Violation of the second moment condi-
tion iuplies non-stationarity of the GARCH(1,1)
process.  However, if some weaker requircments
(such as the log moment condition) are met, the
volatility process may still be stationary even
though (« + #) might exceed unity, For example,
Nelson [1990] shows that when w > 0, by < oo
and {g,, ks } 1s strictly stationary if and only if
Elln{g + an?)] < 0.

The average (30 + 2e8 + #2) cstimates of the
fourth moment condition are also close to unity,
but are usually slightly smaller than the average
{a + ) estimates. Outlicrs have a dramatic offect
on the {3a® + 2a9 + #%) estimates. For example,
when the extreme outlier of 19 October 1987 enters
the estimation period for Nikkei 225, this causes
a sharp doubling in its value (from 1.02 to 2.07).

- Clearly, the fourth moment. regularity condision-is.

more stringent than the second moment condition
when outliers are present.

the ad]

For example, for Nikke: 225 and HSI, the fourth
morment condition is violated more than half of the
time, Removing outliers usually results in ar in-
creased stability of the (3c® + 208 + 3°) estimates
over time and a decreased frequency of viclation of
the fourth moment condition.

Viclation of the fourth moment regularity condi-
tion means that the assumption of asymptotic nor-
mality does not hold so that we cannot draw valid
inferences. For example, the unconditional kurto-
sis measure for the Nikkei 225 may be meaningless.
In addition, we cannot construct meaningful con-

fidence intervals for forecasss.

4.5 The effects of outliers on the
volatility forecasts

The empirical results show that the GARCH(1,1)
forecasts are strongly positively biased (the mean
error {ME} is positive) and, on average, overpredict
volatility 70% of the time. Removing outliers re-
sults in a dramatic decrease in the rate of overpre-
diction and ME. The higher rate of overprediction
when outliers are present arises through higher «
cstimates. A larger proportion of the shocks is al-
lowed to impact on the volatility process, thereby
making the subsequent volatility forecasts inappro-
priately high.

Based on the mean absolute error {MAE), as well
as the mean squared érror (MSE} and root MSE
{RMSE), a significant improvement (of up to 35%)
in the mean forecast error is observed when outlicrs
are removed.

A useful measure of the effects of outliers on fore-
casts is the MSE measure for positive forecast cr-
rors. This MSE measure is usually less than half
the corresponding measure for negative forecast er-
rors. Removing outliers results in a significant re-
duction (of up to 65%) in the MSE measure for pos-
itive forecast errors, but has no significant effect on
the MSE measure for negative forecast errors. The
explanation is that the GARCH(1,1) model usually
underpredicts the largest outliers and overpredicts
the first few subsequent obscrvations.

Although removing outliers may result in sipnifi-
cantly reduced MAE, MSE and RMSE measures,
the corresponding median or relative forecast er-
rors are nob significantly affected. In fact, based on
1sted % measure, removing outliers results
in a significant reduction in the predictive power
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5 (Conclusion

Using a variety of financial time series, we have
shown that outliers significantly affect the param-
eter estimates of the AR{1)-GARCH(1,1) model.
Outliers dominate the maximum likelibovod esti-
mates, causing a significant increase in the AR(1)
and ARCH estimates and a significant decrease in
the GARCH estimates. Furthermore, extremely
Jarge outliers may give rise to spurious AR(1} and
ARCH effects. We also find that large and small
shocks have different memory effects, and that
both observations <do not appear to be generated
by the same GARCH process.

For all the time series investigated, the indepen-
dent and identically distributed assumption of the
conditional shocks cannot be rejected at the 5%
significance level. In contrast, the assumption of
conditional normality cannot be justified. We find
that the maximum excess kurtosis that can be cap-
tured by the GARCH(1,1} model under the as-
sumnption of conditional normality increases with
the standard deviation (which is approximately

40).

We also find that the regularity conditions, in par-
ticular the fourth moment condition, are harder to
satisfy when outliers or extreme observations are
present. Rejection of the fourth moment condi-
tion means that conditional shocks are not asymp-
totically normally distributed, so-that the t-ratios
of the parameter estimates are not asymptotically
normal. Moreover, we cannot constriuct meaning-
ful confidence intervals for the forecasts.

Removing outliers often results in significantly re-
duced forecast errors when measured in terms of
MAE, MSE or RMSE. Most of this reduction is
driven by a marked decrease in the positive forecast
errors, arising from a substantially reduced ARCH
estimate. However, failing to account for outlying
observations significantly reduces fhe variation in
the GARCH forecasts, thereby leading to signifi-
cantly reduced out-of-sample predictive power.
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